Appendix C List of Symbols

A	Amplitude of a vibratory roller
e	Void ratio
c	Percent by weight of coarser fraction of the total material, expressed as a decimal, (1-f)
C	A dimensionless constant in calculating the centrifugal force of a vibratory roller = 35198
CF_{1000}	Vibratory roller centrifugal force operating at 1000 vpm
CF_{1500}	Vibratory roller centrifugal force operating at 1500 vpm
f	Percent by weight of finer fraction of the total material, expressed as a decimal, (1-c)
k	Coefficient of permeability
g	Acceleration due to gravity
$G_{\scriptscriptstyle m}$	Bulk specific gravity
G_s	Grain specific gravity or specific gravity of solids
Н	Diamond core drill size, nominal 7.6 cm (3 in.)
$H_{\scriptscriptstyle W}$	Applied hydraulic head in the USBR constant-head permeability test
h_0	Initial depth of water in the open-pit permeability test
h	Depth of water in open-pit permeability test at time $t = \Delta t$
h_1	Height of water above tip of the standpipe at time $t = t_1$ in the Schmid falling-head test
h_2	Height of water above the tip of the standpipe at time $t=t_2$ in the Schmid falling-head test
n	porosity
n_r	porosity of the rock particle
N	Diamond core drill size, nominal 5.1 cm (2 in.)
Q	A rock classification system for engineering purposes
Q_d	Flow rate in a constant-head permeability test
RMR	A rock classification system for engineering purposes
RQD	Rock Quality Determinator

EM 1110-2-2301 30 Sep 94

Inside radius of the standpipe in the standpipe permeability test r_0 S Degree of saturation Initial degree of saturation of the compacted fill S_{i} S_w Wetted degree of saturation of the compacted fill during the permeability test Vibrations per minute vpmWater content wThe unsprung weight of a vibratory roller drum module W_{u} Change in head over the time interval Δt in the falling-head permeability test Δh ΔS Change in degree of saturation from the as-compacted condition to a wetted condition Elapsed time in the falling-head permeability test Δt Dry density γ_d Dry density of the finer fraction γ_f Bulk density γ_m γ_t Dry density of the total material Unit weight of water γ_w λ Mean number of discontinuities per meter in a rock mass

π

The constant Pi = 3.1416